Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(47): 43306-43315, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467919

RESUMO

ZnO doped with transition metals (Co, Fe, or Ni) that have non-compensated electron spins attracts particular interest as it can induce various magnetic phenomena and behaviors. The advanced atomic layer deposition (ALD) technique makes it possible to obtain very thin layers of doped ZnO with controllable thicknesses and compositions that are compatible with the main microelectronic technologies, which further boosts the interest. The present study provides an extended analysis of the magneto-optical MO Kerr effect and the dielectric properties of (Co, Fe, or Ni)-doped ZnO films prepared by ALD. The structural, magneto-optical, and dielectric properties were considered in relation to the technological details of the ALD process and the corresponding dopant effects. All doped samples show a strong MO Kerr behavior with a substantial magnetization response and very high values of the Kerr polarization angle, especially in the case of ZnO/Fe. In addition, the results give evidence that Fe-doped ZnO also demonstrates a ferroelectric behavior. In this context, the observed rich and versatile physical nature and functionality open up new prospects for the application of these nanostructured materials in advanced electronic, spintronic, and optical devices.

3.
Sci Rep ; 12(1): 18266, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309573

RESUMO

Redox-based memristive devices have shown great potential for application in neuromorphic computing systems. However, the demands on the device characteristics depend on the implemented computational scheme and unifying the desired properties in one stable device is still challenging. Understanding how and to what extend the device characteristics can be tuned and stabilized is crucial for developing application specific designs. Here, we present memristive devices with a functional trilayer of HfOx/Al2O3/TiO2 tailored by the stoichiometry of HfOx (x = 1.8, 2) and the operating conditions. The device properties are experimentally analyzed, and a physics-based device model is developed to provide a microscopic interpretation and explain the role of the Al2O3 layer for a stable performance. Our results demonstrate that the resistive switching mechanism can be tuned from area type to filament type in the same device, which is well explained by the model: the Al2O3 layer stabilizes the area-type switching mechanism by controlling the formation of oxygen vacancies at the Al2O3/HfOx interface with an estimated formation energy of ≈ 1.65 ± 0.05 eV. Such stabilized area-type devices combine multi-level analog switching, linear resistance change, and long retention times (≈ 107-108 s) without external current compliance and initial electroforming cycles. This combination is a significant improvement compared to previous bilayer devices and makes the devices potentially interesting for future integration into memristive circuits for neuromorphic applications.


Assuntos
Redes Neurais de Computação , Oxirredução
4.
Materials (Basel) ; 14(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578892

RESUMO

High-k dielectric stacks are regarded as a promising information storage media in the Charge Trapping Non-Volatile Memories, which are the most viable alternative to the standard floating gate memory technology. The implementation of high-k materials in real devices requires (among the other investigations) estimation of their radiation hardness. Here we report the effect of gamma radiation (60Co source, doses of 10 and 10 kGy) on dielectric properties, memory windows, leakage currents and retention characteristics of nanolaminated HfO2/Al2O3 stacks obtained by atomic layer deposition and its relationship with post-deposition annealing in oxygen and nitrogen ambient. The results reveal that depending on the dose, either increase or reduction of all kinds of electrically active defects (i.e., initial oxide charge, fast and slow interface states) can be observed. Radiation generates oxide charges with a different sign in O2 and N2 annealed stacks. The results clearly demonstrate a substantial increase in memory windows of the as-grown and oxygen treated stacks resulting from enhancement of the electron trapping. The leakage currents and the retention times of O2 annealed stacks are not deteriorated by irradiation, hence these stacks have high radiation tolerance.

5.
Sensors (Basel) ; 19(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614863

RESUMO

This paper presents a comprehensive modeling and experimental verification of active piezoresistive atomic force microscopy (AFM) cantilevers, which are the technology enabling high-resolution and high-speed surface measurements. The mechanical structure of the cantilevers integrating Wheatstone piezoresistive was modified with the use of focused ion beam (FIB) technology in order to increase the deflection sensitivity with minimal influence on structure stiffness and its resonance frequency. The FIB procedure was conducted based on the finite element modeling (FEM) methods. In order to monitor the increase in deflection sensitivity, the active piezoresistive cantilever was deflected using an actuator integrated within, which ensures reliable and precise assessment of the sensor properties. The proposed procedure led to a 2.5 increase in the deflection sensitivity, which was compared with the results of the calibration routine and analytical calculations.

6.
Nanomaterials (Basel) ; 9(7)2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31337145

RESUMO

Atomic force microscopy is a powerful topography imaging method used widely in nanoscale metrology and manipulation. A conventional Atomic Force Microscope (AFM) utilizes an optical lever system typically composed of a laser source, lenses and a four quadrant photodetector to amplify and measure the deflection of the cantilever probe. This optical method for deflection sensing limits the capability of AFM to obtaining images in transparent environments only. In addition, tapping mode imaging in liquid environments with transparent sample chamber can be difficult for laser-probe alignment due to multiple different refraction indices of materials. Spurious structure resonance can be excited from piezo actuator excitation. Photothermal actuation resolves the resonance confusion but makes optical setup more complicated. In this paper, we present the design and fabrication method of coated active scanning probes with piezoresistive deflection sensing, thermomechanical actuation and thin photoresist polymer surface coating. The newly developed probes are capable of conducting topography imaging in opaque liquids without the need of an optical system. The selected coating can withstand harsh chemical environments with high acidity (e.g., 35% sulfuric acid). The probes are operated in various opaque liquid environments with a custom designed AFM system to demonstrate the imaging performance. The development of coated active probes opens up possibilities for observing samples in their native environments.

7.
Beilstein J Nanotechnol ; 9: 2855-2882, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498657

RESUMO

Following a brief historical summary of the way in which electron beam lithography developed out of the scanning electron microscope, three state-of-the-art charged-particle beam nanopatterning technologies are considered. All three have been the subject of a recently completed European Union Project entitled "Single Nanometre Manufacturing: Beyond CMOS". Scanning helium ion beam lithography has the advantages of virtually zero proximity effect, nanoscale patterning capability and high sensitivity in combination with a novel fullerene resist based on the sub-nanometre C60 molecule. The shot noise-limited minimum linewidth achieved to date is 6 nm. The second technology, focused electron induced processing (FEBIP), uses a nozzle-dispensed precursor gas either to etch or to deposit patterns on the nanometre scale without the need for resist. The process has potential for high throughput enhancement using multiple electron beams and a system employing up to 196 beams is under development based on a commercial SEM platform. Among its potential applications is the manufacture of templates for nanoimprint lithography, NIL. This is also a target application for the third and final charged particle technology, viz. field emission electron scanning probe lithography, FE-eSPL. This has been developed out of scanning tunneling microscopy using lower-energy electrons (tens of electronvolts rather than the tens of kiloelectronvolts of the other techniques). It has the considerable advantage of being employed without the need for a vacuum system, in ambient air and is capable of sub-10 nm patterning using either developable resists or a self-developing mode applicable for many polymeric resists, which is preferred. Like FEBIP it is potentially capable of massive parallelization for applications requiring high throughput.

8.
Micron ; 43(12): 1399-407, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22721963

RESUMO

In this study, we demonstrate the increased performance in speed and sensitivity achieved by the use of small AFM cantilevers on a standard AFM system. For this, small rectangular silicon oxynitride cantilevers were utilized to arrive at faster atomic force microscopy (AFM) imaging times and more sensitive molecular recognition force spectroscopy (MRFS) experiments. The cantilevers we used had lengths between 13 and 46 µm, a width of about 11 µm, and a thickness between 150 and 600 nm. They were coated with chromium and gold on the backside for a better laser reflection. We characterized these small cantilevers through their frequency spectrum and with electron microscopy. Due to their small size and high resonance frequency we were able to increase the imaging speed by a factor of 10 without any loss in resolution for images from several µm scansize down to the nanometer scale. This was shown on bacterial surface layers (s-layer) with tapping mode under aqueous, near physiological conditions and on nuclear membranes in contact mode in ambient environment. In addition, we showed that single molecular forces can be measured with an up to 5 times higher force sensitivity in comparison to conventional cantilevers with similar spring constants.


Assuntos
Técnicas Citológicas/métodos , Microscopia de Força Atômica/métodos , Animais , Bactérias/ultraestrutura , Fenômenos Fisiológicos Bacterianos , Membrana Nuclear/fisiologia , Membrana Nuclear/ultraestrutura , Oócitos/fisiologia , Oócitos/ultraestrutura , Sensibilidade e Especificidade , Propriedades de Superfície , Fatores de Tempo , Xenopus laevis
9.
Rev Sci Instrum ; 79(9): 094101, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19044432

RESUMO

This paper summarizes our achievements in the development of an advanced microcantilever-based platform for the detection and recognition of various volatile analytes. The implemented microcantilevers include integrated piezoresistive readout, integrated thermally driven bimorph actuator, and a gold pad at the cantilever apex for functionalization toward the detection of specific substances. Up to eight single microcantilevers can be installed and investigated quasisimultaneously in either gas flow or gas/vapor single injection mode. The experimental setup enables the detection of the microcantilever bending via surface stress changes, characterization of either amplitude or phase spectra of the microcantilever, and also calibration of its sensitivity.

10.
Nano Lett ; 8(2): 375-81, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18163661

RESUMO

We report on a novel sensor for characterization of nanoparticles colloidal suspensions. We employ a diffraction grating under total internal reflection for investigation of nanodisperse fluids passing through an integrated microfluidic channel. Dispersions containing polymeric, metallic, and ferromagnetic nanoparticles are studied. Using this device, we can accurately determine in real-time the specific refractive index for the nanoparticle suspension and the nanoparticle concentration. The nanoparticle concentrations can be calculated with a resolution of 0.3-0.5 wt% for polymeric nanoparticles, 0.03-0.05 wt% for metallic nanoparticles, and 0.05-0.1 wt% for ferromagnetic nanoparticles. This translates to an effective refractive index that can be determined with an accuracy of 7 x 10(-4) for the polymeric and 2 x 10(-4) for the metallic and ferromagnetic dispersions.


Assuntos
Lasers , Teste de Materiais/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Nanopartículas/química , Nanopartículas/ultraestrutura , Fotometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais/métodos , Fotometria/métodos , Integração de Sistemas
11.
Ultramicroscopy ; 106(8-9): 881-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16730410

RESUMO

Many applications in materials science, life science and process control would benefit from atomic force microscopes (AFM) with higher scan speeds. To achieve this, the performance of many of the AFM components has to be increased. In this work, we focus on the cantilever sensor, the scanning unit and the data acquisition. We manufactured 10 microm wide cantilevers which combine high resonance frequencies with low spring constants (160-360 kHz with spring constants of 1-5 pN/nm). For the scanning unit, we developed a new scanner principle, based on stack piezos, which allows the construction of a scanner with 15 microm scan range while retaining high resonance frequencies (>10 kHz). To drive the AFM at high scan speeds and record the height and error signal, we implemented a fast Data Acquisition (DAQ) system based on a commercial DAQ card and a LabView user interface capable of recording 30 frames per second at 150 x 150 pixels.


Assuntos
Microscopia de Força Atômica/instrumentação , Animais , Bivalves/ultraestrutura , DNA/ultraestrutura , Plasmídeos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...